Growing a Future of Clean Renewable Energy™

Contract Agreements & Business Models

Renewable Energy Biomass Field Days Knoxville, TN November 17, 2010

Kelly Tiller, Ph.D.

President & CEO

Genera Energy LLC 2450 E.J. Chapman Drive Knoxville, TN 37996 865.974.8258 ktiller@generaenergy.net

Associate Professor

University of Tennessee Center for Renewable Carbon Knoxville, TN 37996-4570 865.946.1130 ktiller@tennessee.edu

Tailoring Biomass Supply Chain Solutions

Biochemical Biofuels & Products

- Achieving carbohydrate structure for specific conversion processes
- •Blending, if at all, within species for a commodity market like wheat

Thermochemical Biofuels & Heat/Power

- Achieving ash, moisture & rheological property specs
- Blending to produce a commodity market like corn or coal

Petroleum Refinery Markets

- Achieving energy density & feedstock stability
- Blending to produce a stabilized liquid "biocrude" for a commodity market like petroleum crude

While <u>one size</u>
of feedstock <u>may fit</u>
all downstream conversion uses

. . .

It <u>doesn't mean</u> that one size/type/ source/ spec is necessarily the most <u>efficient or cost effective</u> for all downstream conversion uses

Biomass Selection & Pre-Processing

Feedstock Characteristics

Perennial Energy Crops

- •Multi-year production decision
- •High up-front establishment costs
- •Slow yield ramp after establishment
- •Minimal annual production risk postestablishment
- Modgrate/high yield

Annual Energy Crops

- •Annual production decision
- •Full yield harvested in first crop cycle
- •Higher annual production risk
- •May be part of multiyear rotations
- •High yield potential

Ag Residues

- Secondary value stream
- Annual quantity fluctuations
- •Higher annual crop yield (production) risk
- •Low annual yield potential

Forest Residues

- Secondary value stream
- Quantity limited by primary products
- Potentially high collection cost
- Low annual yield potential

Short Rotation Woody Crops

- •Multi-year production decision
- •High up-front establishment costs
- •Slow yield ramp after establishment
- Moderate yield potential

Time Horizon, Risk, Capital Investment, Downstream Processing

Contract/ Business Structure Considerations

- Business models tailored to feedstock characteristics
 - Perennials different from annuals
 - Primary product different from residual product
- Business models tailored to conversion process characteristics and requirements
- Diverse feedstock portfolio strategy reduces supply risk (in theory)
- Carbon credits
- Sustainability certification
- Specialized equipment
- Seed propagation vs. vegetative propagation
- Risk management
- Intermediate products
- Forward/ backward integration

- Contracting with local farmers to produce 6,000 acres of switchgrass
 - Nearly 3,000 acres harvested in 2009
 - Added ~3,000 acres in 2010
 - 1,000 acres improved varieties
- UT/Genera contract with local farmers
 - $\sim $450/ac/yr$ for 3 years
 - We provide seed, technical expertise
 - Separate storage contracts
 - Yield-based component in 2010
- Averaging about 8 tons/ac by 3rd year
 - Harvesting ~2 tons in year 1
 - ~5 tons in year 2
 - ~8 tons year 3 and beyond

RAPC – Regional Aggregation & Processing Cooperatives

RAPC - Regional Aggregation & Processing Cooperatives

Switchgrass RAPC Model

- Supply 500K dt/yr, milled
- 5 regional processing coops, each 100K dt/yr
- CAPEX at \$15M/RAPC:
 - \$1,500/acre
 - \$150/dt
 - \$1.50/gallon
- Initial SG establishment cost \$300-\$400/acre
 - Half is seed cost
 - Assume 90% establishment
- Total farmer investment \$1,800-\$2,000/acre

Corn Stover RAPC Model (at 2 dt/acre)

- Each farm block supplying 2,000 dt represents 1,000 acres
- Each RAPC serves 50,000 acres
- Total supply basin is 250,000 acres
- RAPC CAPEX costs are basically the same

Source: USDA/NASS, August 2010, Land Values & Cash Rents 2010 Summary, ISSN: 1949-1867

World's Most Complicated Pop-up Book

The Gap: Arm-Chair Farming

Farming looks mighty easy when your plow is a pencil, and you are a thousand miles from the corn field.

Tennessee Leading by Example

Genera Energy LLC

2450 E.J. Chapman Drive
UT Business Incubator Bldg.
Suite 216
Knoxville, TN 37996

865.974.8258 (Office) 865.974.8301 (Fax)

www.GeneraEnergy.net

Center for Renewable Carbon

University of Tennessee Institute of Agriculture 2506 Jacob Drive Knoxville, TN 37996-4570 865.946.1130 (Office) 865.946.1109 (Fax)

www.UTBioenergy.org